Evaluating Efficacy of Landsat-Derived Environmental Covariates for Predicting Malaria Distribution in Rural Villages of Vhembe District, South Africa
Malaria in South Africa is still a problem despite existing efforts to eradicate the disease. In the Vhembe District Municipality, malaria prevalence is still high, with a mean incidence rate of 328.2 per 100,0000 persons/year. This study aimed at evaluating environmental covariates, such as vegetation moisture and vegetation greenness, associated with malaria vector distribution for better predictability towards rapid and efficient disease management and control. The 2005 malaria incidence data combined with Landsat 5 ETM were used in this study. A total of nine remotely sensed covariates were derived, while pseudo-absences in the ratio of 1:2 (presence/absence) were generated at buffer distances of 0.5–20 km from known presence locations. A stepwise logistic regression model was applied to analyse the spatial distribution of malaria in the area.
More at this link